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ABSTRACT

This research introduces a climatology of hourly precipitation characteristics, investigates trends in pre-

cipitation hours (PH) and hourly accumulation, and uses four different time series to determine if pre-

cipitation intensity is changing across the southeastern United States from 1960 to 2017. Results indicate

hourly intensity significantly increased at 44% (22/50) of the stations, accompanied by an increase in average

hourly accumulation at 40% of the sites analyzed (20/50). The average duration of precipitation events de-

creased at 82% (41/50) of the stations. However, the frequency of 90th percentile hourly events and events

above station-specific average hourly totals did not show a broad increase similar to hourly intensity. It seems

hourly events are becoming heavier on average, while the duration of the average precipitation event is

decreasing. Geographically, heavy hourly events are more frequent along theGulf Coast and decrease inland.

PH significantly decreased across South Carolina, Georgia, and northern Florida, mainly due to significant

decreases in winter (DJF) and spring (MAM). Decreases in PH during spring were contained to Georgia and

South Carolina and were accompanied by a decrease in accumulation. Decreases in PH during winter were

more widespread and did not exhibit a broad decrease in accumulation, suggesting winter precipitation across

that portion of the region is becoming more intense.

1. Introduction

Precipitation across the southeastern United States

(hereafter SeUS) varies substantially from year to year.

For example, in 2007 an extreme drought struck parts

of Georgia, Alabama, eastern Tennessee, and the

Carolinas, followed by excessive rainfall and flooding in

roughly the same area in 2009, both of which caused

catastrophic economic loss (Manuel 2008; Maxwell and

Soulé 2009; Gotvald andMcCallum 2010). This inherent

variability has a large effect on the hydrologic cycle, and

small shifts in precipitation totals, intensity, and dura-

tion impact runoff, soil moisture, and crop yields in the

region (Karl and Riebsame 1989). Total accumulation,

which represents an aggregation of rainfall character-

istics, is often used to quantify precipitation and is a

vital metric for agriculture, freshwater resources, and

water availability. However, using accumulation alone

omits a large portion of the precipitation story, such as

cause, type, duration, and intensity. These variables are

condensed into one quantity and summed over a day,

month, season, or year to define precipitation, primar-

ily because most precipitation data are recorded daily

(Zolina et al. 2010, 2013; Trenberth et al. 2017). Daily

data are critical to our understanding of precipitation,

but its intermittent nature highlights the need to quan-

tify other characteristics such as frequency, intensity,

and duration, which do not operate at the daily scale

(Trenberth and Zhang 2017). For example, most severe

and extreme storms are associated with short periods of

intense rainfall (Muschinski and Katz 2013) that are not

apparent when examining daily data.

To better understand the significance of projected

climatic change, the historical record of variability must

be investigated so anticipated conditions can be placed

in a longer-term perspective (Bradley et al. 1987). It is

known that the intensity of precipitation events changes

with temperature according to the Clausius–Clapeyron

equation (Trenberth et al. 2003). In fact, intensity has

been observed to increase more thanmean precipitation

(totals) under a warmer climate (Trenberth et al. 2003)

and is one of the more detectable aspects of a changingCorresponding author: Vincent M. Brown, vbrow31@lsu.edu
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hydrologic cycle (Hegerl et al. 2015; Wang et al. 2017).

Precipitation extremes are also projected to become

more frequent (Chou et al. 2012; Kirtman et al. 2013;

Fischer and Knutti 2015), primarily related to changes

in thermodynamic processes (Emori and Brown 2005;

Maloney et al. 2014; Prein et al. 2017). Recent work by

Skeeter et al. (2019) found significant increases in ex-

treme precipitation events across portions of the SeUS;

thus, necessitating the examination of subdaily events to

determine if they are changing in conjunction with daily

and multiday events.

While parts of the SeUS experienced a ‘‘warming hole’’

or an absence of warming compared to other regions

in the United States during the past century (Rogers

2013), temperatures in the region have increased by

roughly 28F since the 1970s and diurnal temperature

ranges have decreased broadly, primarily due to rising

minimum temperatures (USGCRP 2014; Powell and

Keim 2015; USGCRP 2017). With scientific consensus

asserting the global climate has and will continue to

warm (see Kirtman et al. 2013; USGCRP 2017) and

given the recent observed temperature changes (shrinking

daily temperature range, increases in minimum tempera-

tures; see USGCRP 2017) across the SeUS, it is plausible

to expect a response in precipitation; however, trends

in precipitation have been difficult to detect. Detection

is challenging because of inherent variability, but lo-

cations in the SeUS have generally experienced more

precipitation in less time (USGCRP 2017; Powell and

Keim 2015) and extreme precipitation events have be-

come more frequent in recent decades (Kunkel 2003;

USGCRP 2017; Skeeter et al. 2019). Subdaily data

that allow for the investigation of precipitation char-

acteristics are needed to better understand the direct

effects a changing climate may have on precipitation

in the SeUS.

The goal of this research is to examine precipitation

characteristics using hourly data to better understand

subdaily precipitation across the SeUS. No such clima-

tology exists to date, and only recently has work been

started on rain day climatology. In particular, this re-

search focused on the frequency of precipitation hours

(PH), duration of events, intensity, and hourly totals.

Frequency and duration are important for agriculture

and vegetation, while intensity and rainfall rates relate

to flooding risks (Trenberth and Zhang 2017).

This analysis expands upon previous research on

trends in precipitation (e.g., Burauskaite-Harju et al.

2012; Powell and Keim 2015; Fu et al. 2016) by exam-

ining hourly precipitation data at 50 first-order weather

stations across the SeUS. Previous studies (Groisman

and Easterling 1994; Karl et al. 1993; Skeeter et al. 2019)

focused on accumulations when determining change, but

variations in accumulation could be the result of more

hours with precipitation,more intense events, or a unique

combination of changes in frequency, duration, and

intensity. This study will

1) introduce an annual and seasonal climatology of the

frequency of PH across the SeUS,

2) investigate the average duration and intensity of

hourly rainfall annually and seasonally, and

3) develop time series of hourly precipitation charac-

teristics to test for trends in the annual and seasonal

frequency of hours with precipitation and amounts,

change in overall intensity and duration of hourly

events, and the frequency of 90th percentile hourly

events.

2. Study region

This research investigates the spatiotemporal char-

acteristics of precipitation across the SeUS (Fig. 1). The

region was selected because it frequently experiences

extreme events (Kunkel et al. 2012, 2013b; Keim et al.

2018), is highly vulnerable to a changing climate (Powell

and Keim 2015; Carter et al. 2018), is a leading producer

of important crops such as oranges, cotton, tobacco,

rice, and vegetables (USDA 2016), and matches the

study region used by Henderson and Vega (1996), Keim

(1997), and Powell and Keim (2015). The region consti-

tutes the southeastern quadrant of the conterminous

United States.

Composed of eleven states—Alabama, Arkansas,

Florida, Georgia, Louisiana, Mississippi, North Carolina,

Oklahoma, South Carolina, Tennessee, and Texas—the

SeUS is classified as humid subtropical (excluding west-

ern Texas/Oklahoma and southern Florida), but seasonal

and annual distributions of precipitation vary substan-

tially (Fig. 2). Coastal locations along the Gulf of Mexico

(GOM) receive around 1524mm (60 in.) of precipitation

annually, while central locations in the Carolinas and

Georgia receive between 1016 and 1270mm (40–50 in.)

(Kunkel et al. 2013a). The highest annual average ac-

cumulation occurs near southwestern North Carolina

along the Tennessee border where totals often exceed

2540mm (100 in.); the lowest totals are found in western

Texas and Oklahoma, where less than 508mm (20 in.)

are received annually. Variability is largely explained by

daytime convective rainfall (Kunkel et al. 2013a), the

strength and position of the Bermuda high, particularly

in summer (Li et al. 2011, 2012; Diem 2013; Zhu and Liang

2013), proximity to and sea surface temperatures (SSTs)

of theGOM (Trenberth 1998; Trenberth et al. 2003) and

Atlantic Ocean, tropical cyclones (Keim 1996; Nogueira

and Keim 2010, 2011; Nogueira et al. 2013), and local

1738 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:15 PM UTC



topography. Tropical cyclones, which are important to

the climatology (Simpson and Riehl 1981; Nogueira et al.

2013) and cause extreme precipitation events in the SeUS

(Kunkel et al. 2012), were not controlled for or removed.

3. Data

Data for this research come from 50 first-order weather

stations (Fig. 1) that are maintained by the National

Centers for Environmental Information (NCEI) within

the Hourly Precipitation Database (HPD). The HPD

provides time-sequenced hourly precipitation totals for a

network of over 7000 reporting stations primarily located

in theUnited States (NOAA2016). TheHPD is available

on a station-by-station basis and returns all hours with

recorded rainfall including traces in local standard time.

Only first-order weather stations, which provide reliable,

quality controlled, hourly observations at long temporal

scales, were selected for this analysis.

Following methods from Brown et al. (2019), precip-

itation time series were created for each station. Ini-

tially, the year 1950 was selected as the start date for the

time series because a large number of first-order stations

across the region and United States were moved to

airports around that time. By 1950, a majority of the

stations were operational, thus providing a uniform

FIG. 1. The 11-state region selected for this study. Blue dots represent the location of first-

order weather stations used for testing trends (50 in total). An additional six stations were used

to create climatology figures (not pictured).

FIG. 2. Annual average precipitation of the SeUS 1981–2010. Source PRISMClimateGroup,

supported by USDA Risk Management Agency and Northwest Alliance for Computational

Science and Engineering (NACSE) based at Oregon State University.� 2018, PRISMClimate

Group, Oregon State University, http://prism.oregonstate.edu; map created 2015.
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starting point; however, some stations have gaps early

in the record and others did not come online until the

1960s. For these reasons and to ensure a large enough

sample size, first-order weather stations with continu-

ous hourly precipitation data starting in 1960 (58 years)

were used.

To ensure the data were reliable, hourly (totals) ob-

servations (from the HPD) for each station were sum-

med by year to attain an annual total. These annual

data were compared to the Local Climatological Data

(LCD) publication that archives some of the most

reliable precipitation data available. In most cases,

precipitation totals from hourly and daily data agree;

however, they may disagree for a number of reasons,

including under catchment by automated hourly stations

or missing hourly data. One requirement of this study

is a continuous time series for each station where the

hourly observations of each year sum to within610% of

the reported LCD annual precipitation total from daily

data, a threshold selected to follow methods in Brown

et al. (2019). It is known that in the HPD some stations

do not meet the610% requirement for certain years. It

is important to note that most hourly accumulation time

series captured less precipitation (mm) compared to the

observed daily data; thus, capturing at least 90% of the

daily data annually was often the goal. For example, at

Baton Rouge Ryan Airport (KBTR) in 1985, there are

multiple rain days with missing hourly data. To avoid

sacrificing the entire station’s dataset because of a few

missing observations, two other data sources were used,

the Midwestern Regional Climate Center (MRCC) and

the Iowa Environmental Mesonet (IEM).

The first supplementary dataset is the MRCC’s hourly

precipitation database. This database also reports hourly

precipitation in local standard time. Hourly rainfall totals

from the MRCC database are usually the same as the

HPD but sometimes (often due to different quality

control techniques) contain observations that are not

present in the HPD. The MRCC data helped add ob-

servations to years when the HPD data did not meet the

90% requirement; however, the Regional Climate

Center data are very similar to the HPD. Often if data

are missing in the HPD, they are also missing in the

Regional Climate Center data. This was the case with

KBTR data from 1985, when hourly data from both

datasets only summed to roughly 88% of the reported

annual total in the LCD annual report from daily data.

To attain the 90% threshold, a second supplemen-

tary data source was used. This source is the IEM

raw METAR data. Hourly precipitation totals from

METAR are reported at varying times, often at 53min

past the hour and can also contain other special ob-

servations, which can lead to differing hourly totals

(between raw METAR and final HPD) during PH

without careful analysis. In some cases, especially dur-

ing heavy rainfall, the hourly reported IEM data differ

from both MRCC and HPD data by a few millimeters.

Differing totals between the NCEI LCD annual and

monthly reports and summed hourly data can often be

attributed to a few individual months, or just a few days

within a given year (i.e., a severe weather event), as was

the case in 1985 at KBTR. Therefore, individual months

or days where HPD or MRCC data are clearly missing

or lacking were replaced with IEM METAR data. This

was performed manually on a station-by-station basis

by identifying periods (first months then days) in which

HPDorMRCChourly data differed from the LCDdaily

reports. The IEM data were only used for years in which

the annual precipitation totals from the other two hourly

sources were below 90% of the annual totals based on

daily data. Within these years, the IEM data were only

substituted for the specific months (or days) where

precipitation totals from the hourly datawere below 90%

of the totals from daily data. For example, if the June

1990 LCD from daily data recorded 254mm (10 in.) of

precipitation but the HPD hourly data only summed to

203.2mm (8 in.) (80%) then the day(s) in which the

missing totals occurred would be replaced with IEM

data. This was easily identifiable using the LCD daily

reports.

The differing time collection method used in the IEM

and its automated nature introduces slight biases (i.e.,

undercatchment, tipping-bucket issues, systematic er-

rors) but enabled the construction of a continuous

hourly precipitation time series where all years capture

$90% of the edited annual LCD report values. It is

important to note that most years at each station using

the HPD alone contained $95% of the annual pre-

cipitation total. Also of importance is the treatment of

trace values. Trace values represent a wet gauge but no

measureable accumulation and were removed from this

analysis.

Limitations of data

The likelihood that a particular gauge captures the

true amount of precipitation produced by an event

is extraordinarily low. Gauge measurements tend to

underestimate true precipitation, largely due to wind

turbulence at the gauge orifice and wetting loss on the

inside walls of the gauge (Groisman and Legates 1994).

The catch of gauges decreases as wind speeds increase,

and errors are larger with snow (Legates and DeLiberty

1993). Legates and DeLiberty (1993) estimated the av-

erage bias in gauge measurements across the United

States is roughly 9%, with higher biases found in lo-

cations that receive frequent snow and reside at high
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elevations due to less friction. However, Legates and

DeLiberty (1993) found stations in the SeUS tend to

have the lowest bias compared to other regions, with an

average bias of less than 8%.

Another limitation of in situ precipitation data is

caused by station relocation and gauge type. Periodic

relocation of stations can induce discontinuities in

precipitation time series and, along with other biases

discussed above, may limit the ability to detect changes

in the hydrologic cycle or climate change (Groisman and

Legates 1994). Keim et al. (2003) investigated relocation

bias and its impact on temperature measurements and

asserted that it is likely these biases also exist in pre-

cipitation time series. When a precipitation gauge is

moved, it is probable the vegetation, proximity to build-

ings, or elevation also changed. A consequence of such

movement is changes inwind flow characteristics near the

gauge, which can affect gauge catchment (Eischeid et al.

1991). It is also important to understand that gauges

periodically get replaced or upgraded. An example can

be seen in the hourly gauge at Louis Armstrong New

Orleans International Airport in Louisiana, which has

changed four times since 1950. Originally the airport

housed a universal rain gauge, followed by a tipping-

bucket, then an automated heating tipping-bucket, and

finally, an all-weather precipitation accumulation gauge.

Thismay seem detrimental to any analysis attempted, but

all records of equipment type and relocation are well

documented. It is also important to keep inmind the strict

quality control standards maintained by the National

Weather Service (NWS). The NWS requires that sta-

tions not be moved more than 8 km (5 mi), nor change

elevation 630 m (100 ft), to be considered compatible

with the original station location. This ensures that pre-

cipitation measurements are as reliable and consistent

as possible (NOAA 2012).

Trepidations regarding the accuracy of gauge mea-

surements are a problem in any analysis and although no

dataset is perfect, the HPD is one of the more reliable

sources of hourly precipitation (Brooks and Stensrud

2000). As stated above, the likelihood a gauge captures

the true precipitation total of an event is extremely low.

To avoid this bias, this analysis focused on PH. PH are

binary, meaning it is either raining or not. It is likely PH

have less biases when compared to precipitation totals.

4. Methods

Data from the HPD and the supplemental sources

were used to create time series of PH and precipita-

tion totals on an annual and seasonal basis. Regression,

which is widely used in precipitation research (Kunkel

et al. 1999; Groisman et al. 2012; Skeeter et al. 2019; etc.),

was implemented using the created time series to de-

termine if long-term trends existed in annual and sea-

sonal PH and precipitation totals time series for each

station. The residuals for each stations time series were

tested for normality—an assumption of regression

(Montgomery and Peck 1982)—using the Shapiro–Wilk

test (Shapiro and Wilk 1965). Residuals for some of the

times series (e.g., stations in Texas where near-zero

precipitation during a season can occur) were not nor-

mally distributed and exhibited p values, 0.05; however,

small deviations from normality do not affect the re-

gression model as it is robust when errors in normal-

ity are present (Montgomery and Peck 1982). Further

evaluation using normal Q–Q, residual versus fitted, and

scale-location plots revealed approximate normality

and added confidence to the regression tests performed

on the time series with time (year) as the independent

variable and the number of PH or totals as the depen-

dent variable. An example of one regression equation

is as follows:

(winter PH)5 b
0
1 b

1
(year) .

To investigate changes in hourly precipitation in-

tensity, four separate time series were created for each

station, all on an annual basis. First, the average an-

nual hourly intensity was calculated for each station by

adapting the simple daily intensity index for hourly data

(Powell and Keim 2015; Brown et al. 2019). The simple

daily intensity index is calculated by dividing the annual

precipitation total by the number of days with precipi-

tation (defined as any day with precipitation . 0mm)

as a measure of intensity. Similarly, the annual hourly

intensity was calculated by dividing the annual pre-

cipitation total by the number of PH in that given year.

Second, time series of average hourly accumulation

were created by averaging each hourly observation

(only on hours where precipitation. 0.254mm) within

each year. The frequency distribution of hourly pre-

cipitation amounts resembles a Poisson or right skewed

distribution, with the highest frequency occurring

at 0.254mm (0.01 in.) and decreasing in frequency as

magnitude increases (Fig. 3). The nature of the hourly

precipitation distribution does not allow for considerable

deviation in the mode or median; however, the mean will

more noticeably shift up or down when changes in pre-

cipitation occur (i.e., more or less intense precipitation

in a year) and provides a good indication of changes in the

distribution.

Third, a time series of the frequency of hours with

totals above the overall average hourly accumulation

was created. For example, the average hourly accumu-

lation using all hourly observations (1960–2017) with
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precipitation at Baton Rouge (KBTR) is 3.3mm (0.13 in.).

The number of times an hourly precipitation total was

greater than this station specific average hourly total

was recorded for each year of the time series to deter-

mine if above average hourly totals are occurring more

frequently through time.

The annual frequency of 90th percentile hourly events

was used to determine if the top 10% of hourly events

were changing through time. This metric is of interest

because Karl and Knight (1998) found increases in

precipitation mostly due to changes in the top 10% of

the distribution, where the total precipitation attributed

to heavy and extreme events increased at the expense

of moderate events. Furthermore, Prein et al. (2017)

asserted extreme hourly precipitation events should in-

crease significantly across the United States in areas

with abundant moisture, such as the SeUS. Each 90th

percentile threshold was calculated on a station-by-station

basis based on the time series of hourly precipitation

amounts. One disadvantage of the percentile-defined

approach becomes evident when the time series is ranked

because a large range of values exist at the far right of

the distribution that can differ by tens of millimeters

(Groisman et al. 2012); however, for this analysis the fo-

cus is on the frequency of events surpassing station spe-

cific thresholds, not exact hourly totals.

The annual duration of precipitation events was in-

vestigated by averaging the duration of all precipitation

events within each year. Using hourly precipitation data,

durations have to be expressed in hourly increments

(Robinson and Henderson 1992). While the occurrence

of measured precipitation in an hour does not assure

continuous precipitation or even that a single event oc-

curred, it is impossible to separate those events (Robinson

and Henderson 1992). Robinson and Henderson (1992)

discussed how the length of dry periods between events

is not self-evident and that synoptic analysis by Thorp

and Scott (1982) suggest that there is no single correct

value to separate events. However, for climatological

and hydrological uses, a single consistent separation

interval (or 1 h) is desirable (Robinson and Henderson

1992). In this research, if measureable precipitation was

recorded, it was labeled as an event and the length of the

event depended on how many consecutive hours’ mea-

surable precipitation occurred. In each year, for each

station, the average duration of events was calculated by

determining each individual event duration and sum-

ming each, then dividing by the annual frequency of

individual events. This helps determine if annual event

durations are changing through time. Each of the time

series were tested for normality for use in regression.

Kriging and natural break classification

To visualize spatial (climatological) patterns in pre-

cipitation characteristics, spatial interpolation via ordi-

nary kriging with natural break classification in ArcGIS

10.5 was used. Interpolation was necessary due to the

sparseness of reliable, long-term hourly station data.

The eleven state region covers roughly 2 066 712 km2

(797 962mi2). If the stations were equally spaced, there

would be one station for every 36 905km2 (14 249mi2)—

making this one obvious limitation of the analysis.

FIG. 3. Example of typical hourly precipitation distribution. The highest frequency (mode)

occurs at 0.254mm (0.01 in.), the median at 1.27mm (0.05 in.), and the mean at 3.30mm

(0.13 in.).
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Kriging, a geostatistical technique for optimal spatial

estimation (Waller and Gotway 2004; Ozturk and Kilic

2016), uses the statistical properties of the stations pre-

cipitation characteristics, quantifies the spatial auto-

correlation of the station points, and accounts for

the configuration of the points around the estimated

location(s) (Matthews 2002; Ozturk andKilic 2016). The

distance between stations is assumed to reflect spatial

correlation that can be used to explain variation in the

estimated surface (Oliver and Webster 1990). One lim-

itation of this approach in addition to the distances be-

tween points is topography, which is not accounted for

and can lead to over simplification of local precipitation

characteristics in mountainous areas of the region.

These maps are used to generalize precipitation char-

acteristics across the SeUS and have limitations in in-

terpretation because of the sparseness of data points.

This limitation can be seen when comparing Fig. 2,

which is generated (1981–2010) from a relatively dense

station network (daily data) and incorporates digital

elevation models and other spatial datasets (Daly et al.

1997), and Fig. 4b, generated from hourly data at 56 first-

order weather stations (1960–2017). To generate Fig. 4b

and subsequent climatologymaps, six additional stations

were used with slightly differing starting dates (between

1965 and 1970) to fill gaps in data-sparse areas. These

stations were only used for the climatological maps to

better fill in data gaps and to aid in visualizing patterns

across the SeUS. These stations were not used in any

other part of the temporal analyses.

The highest annual average precipitation accu-

mulation in the region, located along the border of

eastern Tennessee and western North Carolina in

the Appalachian Mountains, is not evident in Fig. 4b.

Higher accumulations in the Ouachita Mountains of

western Arkansas are also not captured because of the

relatively sparse station density. The spatial patterns

shown in the generated climatological maps are only

as good as the spatial resolution of the stations. While

local precipitation characteristics and spatial patterns

are greatly simplified, the kriged annual accumulation

map from hourly data largely identifies the same pre-

cipitation patterns as Fig. 2. This lends confidence

to all the interpolated precipitation maps. For more in-

formation on kriging see Matthews (2002), Waller and

Gotway (2004), and Ozturk and Kilic 2016, as well as

the Environmental Systems Research Institute (ESRI)

website.

Natural breaks (Jenks 1967) were used to classify

the categories for each precipitation characteristic. The

natural breaks method classifies data values into sepa-

rate ‘‘bins’’ based on breaks or naturally occurring

gaps in the data (Jiang 2013). This optimization mini-

mizes within-class variance and maximizes between

class variations simultaneously (Jenks 1967) and is known

as the goodness-of-variance fit method (Jiang 2013).

FIG. 4. Annual precipitation characteristics: (a) annual average precipitation hours, (b) annual precipitation accumulation (mm),

(c) annual average precipitation duration, and (d) average annual hourly precipitation accumulation (mm).
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This approach is widely used in statistical mapping (see

Chen et al. 2013 and Jiang 2013). For more information

on natural breaks see Jenks (1967).

5. Results

a. Annual climatology

Using kriging and natural breaks classification in

ArcGIS 10.5, a map of average annual PH across the

SeUS was created (Fig. 4a). Results indicate stations

in eastern Tennessee and western North Carolina ex-

perience the most PH annually, while stations in

westernOklahoma andTexas receive the least. Louisiana

and northern Florida experience a similar number of PH

and a large east to west gradient is prevalent across Texas.

Comparing Figs. 4a and 4b, it is evident that precipitation

characteristics vary substantially across the region. For

example, southern Louisiana, Mississippi, and Alabama

tend to accumulate more precipitation compared to

the rest of the region, excluding orographically forced

precipitation over eastern Tennessee and southwestern

North Carolina that is not resolved in Fig. 4b, but do not

experience the most PH. This is the result of differing

hourly precipitation intensities and durations produced

by varying synoptic conditions that cause precipitation

in the region.

The average annual duration of precipitation events

(Fig. 4c), which are not confined to the daily scale, follows

a similar spatial pattern as PH. Florida, a precipitation

regime dominated by summer afternoon convection, and

western Texas, the driest sector of the region, have the

shortest precipitation event durations on an annual basis.

Gulf Coast stations also exhibit lower annual durations

compared to stations across the northeastern tier of the

region. These stations (across Tennessee and North

Carolina) receive more PH but less accumulation re-

sulting in less intense precipitation that persists for a

longer duration. This pattern is reflected in average

hourly accumulations (Fig. 4d), which are roughly 25%

higher across the Gulf Coast and Florida compared to

the western and northeastern portions of the region,

and the average annual frequency of 25.4mm (1 in.) or

greater hourly events (Fig. 5). The Gulf Coast and

Florida average approximately twice as many 25.4mm

(1 in.) or greater hourly events annually compared to

the rest of the region.

b. Seasonal climatology

Seasonally, the locations that receive the most PH

shifts dramatically. In winter (DJF), the PH maximum

is located in eastern Tennessee and along the Appa-

lachian Mountains (Fig. 6a), due to slow moving frontal

events, orographic uplift, and cold air damming events

(Bell and Bosart 1988; Rackley and Knox 2016). This

area is also where the annual snowfall maxima is lo-

cated for the SeUS (Kunkel et al. 2013a). However,

the highest accumulations are located in Louisiana,

Mississippi, and Alabama (Fig. 6b). Southern Florida

experiences similar PH frequencies as parts of Texas,

mainly due to a shift in storm tracks (Klein 1957;Whittaker

and Horn 1984) that shield Florida from precipitation

events. Average durations in winter follow a similar

pattern as PH (Fig. 6c), where Florida and Texas have

shorter average durations compared to most of the

region. Longer duration events in the northeastern

sector of the region are related to frontal events that

often bring snow (Keim 1996). Gulf Coast locations

exhibit shorter durations compared to interior loca-

tions but have higher average hourly accumulations

FIG. 5. Average annual frequency of 25.4mm (1 in.) or greater events, derived by frequency of

events divided by station period of record.

1744 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:15 PM UTC



(Fig. 6d), highlighting the intensity of winter precipita-

tion across the Gulf Coast. Nonetheless, winter is when

most stations experience the longest average duration of

precipitation events, primarily due to frequent frontal

events (Keim 1996).

In spring (MAM), PH are more frequent in the

northern portion of the region (Fig. 7a). A north to

south gradient exists from northern Tennessee to the

Gulf Coast. Texas, again, exhibits a large east to west

gradient, and Florida experiences below-average PH

frequencies compared to the rest of the region. Ac-

cumulations in spring are highest across Mississippi,

centralArkansas, andwestern Tennessee (Fig. 7b), where

inflow from the Gulf of Mexico provides moisture for

passing fronts and storms. Precipitation totals decrease

east and west of central Mississippi, a gradient in the

opposite direction of PH.

The average duration of events in spring (Fig. 7c) is

similar to winter with longer durations found in the

northern sector and shorter durations in Texas and

Florida. The slightly above average durations across

Oklahoma and Arkansas are related to severe weather

outbreaks and mesoscale convective complexes (Ashley

et al. 2003) that impact those states in spring. Average

hourly accumulations (Fig. 7d) resemble annual and

winter patterns as well. The Gulf Coast stations have

higher hourly accumulations compared to the rest of

the region.

In summer (JJA) a large shift in PH is observed.

Gulf and Atlantic coastal stations, as well as Florida,

experience the greatest PH (Fig. 8a), coinciding with

high accumulation (Fig. 8b). This rainfall is largely

attributed to daytime convective storms that gather

moisture from the nearby water bodies and tend to

be somewhat intense (Fig. 8d). Across Florida, rising

air along sea breeze fronts also produces substantial

rainfall (Kunkel et al. 2013a). Average event durations

(Fig. 8c) are not congruent with PH frequencies or ac-

cumulation. Stations along the Gulf Coast and extend-

ing inland, which accumulate substantial rainfall, have

short average durations. Compared to all seasons, sum-

mer averaged the shortest event durations, but parts of

Texas, Oklahoma, and the Carolinas exhibit relatively

longer average durations. The northerly stations are

more frequently affected by fronts in summer than lo-

cations farther south. Furthermore, Oklahoma stations

have higher durations related to mesoscale convective

complexes, which are active in the area in the summer

(Ashley et al. 2003). Longer durations in Texas (Waco,

Austin, and SanAntonio) could be related of topography

and onshore flow, causing air to rise and precipitation

to occur.

During fall (SON), PH are more frequent in eastern

Tennessee and southwestern North Carolina and a min-

imum exists in western Texas (Fig. 9a). Accumulations

are highest in southern Florida and Louisiana (Fig. 9b),

FIG. 6. Winter (DJF) precipitation characteristics: (a) average precipitation hours, (b) precipitation accumulation (mm), (c) average

precipitation duration, and (d) average winter hourly precipitation accumulation (mm).
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likely related to tropical cyclones (Simpson andRiehl 1981;

Nogueira et al. 2013). A large gradient exists in PH

and accumulation across Texas and Oklahoma linked

to moisture availability and cyclogenesis. The aver-

age duration of events resembles spring and winter

(Fig. 9c). Florida and much of the Gulf Coast have

below-average durations, while Tennessee and the

western Carolinas have above-average durations. Av-

erage hourly accumulations (Fig. 9d) are higher along

the Gulf Coast, demonstrating yet again the intensity of

events in those areas.

6. Trends in precipitation hours and totals

a. Annual

Fourteen of the 50 stations had statistically signifi-

cant (defined as a p value # 0.05) trends in the annual

frequency of PH (Fig. 10a). Across South Carolina,

Georgia, and northern Florida, thirteen stations exhibited

significant decreasing trends (of roughly 1.2–2 h yr21;

Table 1), while two stations had decreasing trends

with p values between 0.05 # p # 0.10. Annual accu-

mulation trends showed a different pattern. Only five

stations had significant trends, of which three were

increasing and two decreasing (Fig. 10b). Another six

stations had p values between 0.05 # p # 0.10, of

which four (two) showed increasing (decreasing) trends.

Annual accumulation trends lack a clear spatial pat-

tern excluding the three stations with decreases in

Georgia and South Carolina, likely related to the

decreases seen in annual precipitation hours. The

parameter estimates (change in variable per one unit

change in year) and correlation coefficients for each

station for annual hours and annual accumulation can

be seen in Table 1.

b. Seasonality

In winter, PH significantly decreased across North

Carolina, South Carolina, Georgia, and northern

Florida (Fig. 10c). Seventeen stations in that sector

and 22 stations overall showed statistically significant

decreases in PH. Parameter estimates for PH across

Georgia and the Carolinas are between21.23 and20.51,

meaning PH have decreased on average by 0.51–

1.23 h yr21 since 1960. Winter totals (Fig. 10d) do not

reflect this change, as only five stations in the entire

region showed a significant decrease in precipitation

accumulation. This reveals a change in winter precipi-

tation across that sector, where the frequency of PH is

decreasing but precipitation totals are not, favoring

more intense winter precipitation.

In spring, four stations had significant decreasing

trends in PH and another five stations had decreasing

trends at the 0.05 # p # 0.10 level (Fig. 10e). These

stations were located across Georgia and South Carolina

FIG. 7. Spring (MAM) precipitation characteristics: (a) average precipitation hours, (b) precipitation accumulation (mm), (c) average

precipitation duration, and (d) average hourly precipitation accumulation (mm).
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and, generally, exhibited decreases in accumulation

(Fig. 10f). It is interesting that the decreases in PH

during spring are accompanied by a decrease in accu-

mulation, whereas the stations that have decreasing PH

in winter do not also exhibit a decrease in accumula-

tion. The decrease in annual PH in Georgia and South

Carolina can be attributed to a decrease in PH during

winter and spring, but, the fact annual totals are not

broadly decreasing in this sector is unique, especially

considering no other season showed increasing totals

in that area. This phenomenon could be related to

changes in cold-air damming, which peaks in activity

during winter and spring and has a large influence on

precipitation patterns at stations near Appalachia (Bell

and Bosart 1988; Rackley and Knox 2016), or snowfall

which has decreased in this general area in the past

50 years (Eck et al. 2019).

During summer, eight stations exhibited signifi-

cant trends in PH (Fig. 10g). Three east coast stations

had decreasing trends, and stations across Louisiana,

Mississippi, and southern Florida had increasing trends.

Summer accumulations (Fig. 10h) showed an almost

identical pattern as PH; however, stations in southern

Louisiana and Mississippi saw spatially coherent in-

creases in PH. Finally, during fall, two stations showed

significant increasing trends in PH (Fig. 10i) and another

three station had increasing trends at the 0.05# p# 0.10

level. These stations were located across the coastal

Carolinas. Similar to summer, fall totals closely mim-

icked fall PH (Fig. 10j).

7. Trends in intensity and duration

Forty-four percent (22 of 50) of the stations exhibited

significant increases in annual hourly intensity (Fig. 11a).

Another seven stations had increasing trends at the

0.05 # p # 0.10 level. However, there does not appear

to be a clear spatial pattern. This is in agreement with

Powell and Keim (2015) that found a broad increase in

daily intensity across the region, providing evidence that

precipitation events continue to become more intense.

Observed trends in intensity and parameter estimates can

be seen in Table 1. Annual intensity (precipitation accu-

mulation divided by precipitation hours) increased for

stations Mobile, Alabama (KMOB), and San Angelo,

Texas (KSJT), by greater than 0.01mmh21 yr21 and had

correlation coefficients (intensity versus year) of roughly

r5 0.44. Trends in average hourly total (Fig. 11c) show a

similar pattern. Forty percent (20 of 50) of stations had

significant increasing trends and another seven stations

had increases at the 0.05 # p # 0.10 level. Most stations

that showed increases in annual hourly intensity also

showed increases in hourly totals.

Unlike annual hourly intensity and average hourly

totals, the frequency of hours with totals above the

station-specific average hourly accumulation did not

FIG. 8. Summer (JJA) precipitation characteristics: (a) summer average precipitation hours, (b) precipitation accumulation (mm),

(c) average precipitation duration, and (d) average hourly precipitation accumulation (mm).
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show a broad increase as expected (Fig. 11d). Six sta-

tions had significant trends and five were decreasing,

located near South Carolina and Georgia, likely re-

lated to the decreasing precipitation hours found there.

The lack of a broad increase in the frequency of hours

above the average hourly total reveals the frequency

distribution of hourly precipitation is not changing

shape. In fact, it is likely the heaviest hourly events are

contributing more rainfall (increasing magnitude). For

example, Brown et al. (2019) found, during some years,

half of the annual rainfall total at stations in Louisiana

could be attributed to 44–47 individual hourly events.

This means roughly 0.005% of the annual hours, or the

top 10% of hourly events, can be responsible for half of

the annual accumulation. Brown et al. (2019) also found

the frequency of 90th percentile hourly events increased

at three of four stations in Louisiana, but this phenom-

enon seems unique to Louisiana. Across the region, only

seven stations had significant trends in the frequency

of 90th percentile hourly events: six increasing and one

decreasing. Another five stations had increasing trends

significant at the 0.05 # p # 0.10 level. These results

show the change in intensity of hourly precipitation

found across the region is not solely attributed to more

frequent heavy hourly events. It is likely that increases in

the magnitude of hourly events is a larger contributor to

the observed increase in hourly intensity compared to

more frequent heavy hourly events.

Trends in average event duration revealed 82% (41 of

50) of the stations experienced a statistically significant

decrease in average event duration (Fig. 11b), and one

other station [San Antonio, Texas (KSAT)] had a de-

creasing trend significant at the 0.05# p# 0.10 level. The

other eight stations, while not significant, had decreasing

trends as well. The significant decreasing trend present at

Charlotte Douglas International Airport, North Caro-

lina (KCLT), is a good representation of what is occur-

ring at most stations (Fig. 12a). Arguments can be made

that precipitation measurements have vastly improved,

leading to the quantification of more 1-h events, which

would lower the overall average duration. This systematic

error is conceivable, but the fact that only one stations

across the region exhibited a significant increasing trend

in annual PHdemonstrates that gauges are not recording

more hours with precipitation. If some type of systematic

error or bias does exist due to gauge replacement or

improvement, the strength and consistency of the trend,

which is apparent at 82% of the stations in the region,

would likely be highly variable and station specific. The

residuals from the regression (Fig. 12b) show no pattern

and uncorrelated errors; however, further investigation

into the observed decrease in average annual duration is

needed before systematic or human-induced errors can

be completely ruled out.

Decreasing trends in duration could be related to the

denominator when calculating average annual durations;

FIG. 9. Fall (SON) precipitation characteristics: (a) average precipitation hours, (b) precipitation accumulation (mm), (c) average pre-

cipitation duration, and (d) average hourly precipitation accumulation (mm).
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FIG. 10. Trends in (left) PH and (right) accumulation for (a),(b) annual; (c),(d) winter; (e),(f) spring; (g),(h) summer;

and (i),(j) fall. Large red arrows represent decreasing trends significant at the p # 0.05 level; smaller, darker red arrows

represent decreasing trends at the 0.05# p# 0.10 level. Large light green arrows represent increasing trends significant at

the p # 0.05 level; smaller, darker green arrows represent increasing trends significant at the 0.05 # p # 0.10 level.

AUGUST 2019 BROWN ET AL . 1749

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:15 PM UTC



TABLE 1. Annual trend (parameter estimate) and correlation r for PH (columns 3–4), accumulation (columns 5–6), intensity (mmh21;

columns 7–8), and duration (hours per event; columns 9–10). Parameter estimates can be interpreted as the change per one unit change in

time (year). For example, the parameter estimate for annual hours at CAE is 21.99, meaning per every one unit increase in year, the

number of PHdecreases by 1.99 on average.One asterisk (*) corresponds to p values significant at the 0.10 level, two asterisks (**) denotes

significance at the 0.05 level, and three asterisks (***) denotes significance at the 0.01 level.

PH Accumulation Intensity Duration

Station State

Parameter

estimate r

Parameter

estimate r

Parameter

estimate r

Parameter

estimate r

HSV AL 20.71 20.16 22.02 20.14 20.0002 20.02 20.0081*** 20.39***

MGM AL 21.17** 20.28** 20.82 20.06 0.0056* 0.25* 20.0095*** 20.37***

MOB AL 20.51 20.11 3.61 0.21 0.011*** 0.44*** 20.0025 20.16

FSM AR 0.32 0.07 4.2** 0.29** 0.0083*** 0.35*** 20.0042** 20.26**

LIT AR 0.07 0.02 1.35 0.09 0.0026 0.15 20.005** 20.3**

DAB FL 20.42 20.11 0.27 0.02 0.0046 0.18 20.0065*** 20.49***

JAX FL 21.33** 20.31*** 21.1 20.07 0.007** 0.29** 20.0021 20.17

KEY FL 20.39 20.12 0.18 0.01 0.0063** 0.21* 20.0017 20.16

MIA FL 1.3** 0.32*** 5.98*** 0.35*** 0.0039 0.16 20.0024** 20.26**

PBI FL 0.53 0.12 20.74 20.04 20.0057* 20.24* 20.0032*** 20.36***

TLH FL 21.16** 20.27** 26.6*** 20.35*** 20.0044 20.18 20.009*** 20.51***

TPA FL 0.54 0.18 3.41* 0.24* 0.0051 0.18 20.0021 20.16

AGS GA 21.77*** 20.36*** 22.4* 20.23* 0.0039* 0.22* 20.0133*** 20.54***

AHN GA 21.6** 20.3** 23.69* 20.26* 0.0006 0.04 20.0141*** 20.65***

ATL GA 21.31** 20.26** 20.99 20.08 0.0039** 0.28** 20.009*** 20.56***

CSG GA 21.27** 20.27** 22.89 20.18 0.0009 0.05 20.0133*** 20.65***

MC GA 21.59** 20.33*** 0.21 0.02 0.008*** 0.48*** 20.0073*** 20.41***

SAV GA 21.76*** 20.44*** 22.43 20.17 0.006* 0.26* 20.0044** 20.29**

BTR LA 0.15 0.04 3.41 0.19 0.0062** 0.26** 20.0076*** 20.46***

LCH LA 0.76 0.17 4.21* 0.24* 0.0042 0.15 20.0085*** 20.45***

MSY LA 20.46 20.1 2.38 0.12 0.0087** 0.33*** 20.0063*** 20.39***

SHV LA 20.07 20.02 3.45 0.2 0.0083*** 0.36*** 20.0056** 20.29**

JAN MS 20.79 20.19 0.88 0.05 0.0075** 0.29** 20.0103*** 20.58***

MEI MS 0.64 0.15 0.25 0.02 20.0031 20.14 20.0131*** 20.54***

CLT NC 21.23** 20.28** 20.67 20.06 0.0034* 0.24* 20.0129*** 20.7***

GSO NC 20.73 20.18 20.14 20.01 0.0034 0.16 20.0102*** 20.55***

HSE NC 0.35 0.07 2.62 0.16 0.0032 0.17 20.009*** 20.47***

ILM NC 20.26 20.07 2.56 0.2 0.0059** 0.26** 20.0069*** 20.46***

RDU NC 0.36 0.09 3.07** 0.31*** 0.0047** 0.29** 20.0074*** 20.44***

OKC OK 20.26 20.06 2.84* 0.24* 0.011*** 0.42*** 20.0017 20.09

TUL OK 20.07 20.02 20.15 20.01 0.0003 0.01 20.0084*** 20.44***

CAE SC 21.99*** 20.39*** 24.27** 20.3** 0.0012 0.07 20.0156*** 20.65***

CHS SC 21.54*** 20.36*** 20.44 20.03 0.0083*** 0.38*** 20.009*** 20.54***

GSP SC 21.65** 20.27** 22.72 20.18 0.0019 0.14 20.0135*** 20.53***

BNA TN 20.54 20.12 1.41 0.11 0.0047** 0.31*** 20.0121*** 20.6***

CHA TN 21.34* 20.25* 0.25 0.02 0.0058*** 0.35*** 20.008*** 20.36***

TYS TN 20.3 20.06 1.78 0.15 0.0041** 0.31*** 20.0045** 20.3**

AAT TX 20.01 0 2.21 0.16 0.0056* 0.22* 20.0037 20.21

ABI TX 20.48 20.14 0.18 0.02 0.0051* 0.22* 20.0069*** 20.35***

ACT TX 20.09 20.02 2.97* 0.25* 0.0107*** 0.47*** 20.0087*** 20.37***

AMA TX 20.58 20.18 20.2 20.03 0.003 0.14 20.0085*** 20.45***

BRO TX 20.33 20.1 0.99 0.1 0.0063* 0.22* 20.0038** 20.27**

CRP TX 21.02* 20.25* 20.24 20.02 0.0101** 0.31*** 20.005** 20.29**

ELP TX 20.26 20.1 0.72 0.16 0.0079*** 0.4*** 20.0078*** 20.43***

LBB TX 20.3 20.09 20.19 20.02 0.0007 0.03 20.0032 20.14

MAF TX 20.59 20.18 20.55 20.07 0.0029 0.13 20.0018 20.08

SAT TX 20.62 20.12 1.62 0.12 0.0085*** 0.36*** 20.0037* 20.23*

SJT TX 20.36 20.12 1.63 0.18 0.0116*** 0.44*** 20.0067*** 20.37***

SPS TX 20.21 20.06 20.18 20.02 0.0014 0.06 20.0094*** 20.47***

VCT TX 0.21 0.04 1.52 0.08 20.0008 20.03 20.0086*** 20.34***
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the frequency of individual precipitation events. If the

number of events in a year increases while PH is held

constant, the annual average duration will decrease. For

example, if the frequency of hourly traces within pre-

cipitation events increases temporally in station time

series then precipitation events will be increasingly frag-

mented, thus artificially increasing the number of pre-

cipitation events and lowering durations. To investigate

this possible bias, correlation was conducted on the fre-

quency of individual precipitation events and time (year;

n5 58, degrees of freedom5 56) for each station. Results

showed 14 stations had significant (p# 0.05) correlations,

of which 12 were positive (increasing) and 2 were nega-

tive (decreasing). Another three stations showed positive

correlations significant at 0.05 # p # 0.10. This demon-

strates that at least part, but not all, of the overall de-

crease in duration can be attributed to increasing events

through time.

Although many trends were significant, it is important

to discuss potential limitations. It is possible that slight

(nonsignificant) increases in annual totals, which are

likely driving the change in annual intensity, are related

to better measurement processes; however, no evidence

for this was found when viewing residuals. Gauges at

first-order stations are updated or replaced periodically;

however, the National Weather Service professionally

manages these stations and control for systematic biases.

This possible bias and other known biases in precipita-

tion measurement (see Legates and DeLiberty 1993;

Groisman and Legates 1994) is why PH were used, be-

cause PH are binary, it is either raining or it is not. Using

the frequency of PH and determining trends is likely a

less biased approach compared to using accumulations

alone. It is also important to understand it is possible

that the selected study period is a time of increasing

precipitation amount or intensity, imbedded within

a larger sinusoidal system with natural upward and

downward movements. Nonetheless the spatial coher-

ence and broad agreement in trend directions adds

confidence to the results presented.

8. Key findings and conclusions

Precipitation totals only describe a small portion of

the precipitation climatology of the SeUS. This study

has shown that PH, durations, and intensity vary just as

much as accumulation across the region. For example,

across Louisiana, the wettest state in the conterminous

United States (Faiers et al. 1994), roughly 5% of the

annual hours have precipitation, while parts of eastern

Tennessee, western North Carolina, and northern

Georgia experience close to 7%. It was also found that

FIG. 11. Trends in (a) hourly intensity, (b) average duration, (c) average hourly totals, and (d) frequency of hourly events above overall

station specific average hourly accumulation. Large red arrows represent decreasing trends significant at the p# 0.05 level; smaller, darker

red arrows represent decreasing trends at the 0.05# p# 0.10 level. Large lighter green arrows represent increasing trends significant at the

p # 0.05 level; smaller, darker green arrows represent increasing trends significant at the 0.05 # p # 0.10 level.
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the frequency of hourly 25.4mm (1 in.) or greater events

is largely confined the Gulf Coast and decreases inland.

In all seasons, average hourly totals were highest near

the Gulf Coast and Florida, while average durations

tended to be below average, further highlighting the

intensity of hourly rainfall across this area. Average

durations and PH tended to be highest in the northeast-

ern sector of the region in all seasons, but accumulations

tended to be lower excluding mountainous locations with

orographically forced precipitation.

Regression tests revealed only five stations had sig-

nificant increases in annual accumulation through time.

PH showed a different pattern. Thirteen stations, mostly

across Georgia, South Carolina, and northern Florida,

had significant decreases in annual hours with precipi-

tation. The annual decrease in PH at these locations was

FIG. 12. (a) Regression results for the average annual duration of precipitation events

at Charlotte Douglas International Airport, NC, and (b) residuals from the regression.

The residuals show no apparent systematic bias.
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attributed to decreases in PH during spring and winter.

The decrease in PH during spring was accompanied by a

decrease in precipitation totals but winter totals did not

decrease with PH at these locations. In summer, eight

stations showed significant changes in accumulation, four

increasing and four decreasing. PH followed a similar

pattern during summer. Finally, in fall, the eastern half of

NorthCarolina and one station in SouthCarolina showed

increases in accumulations. These stations also exhibited

increasing trends in PH.

This study also highlighted the increasing intensity and

decreasing duration of precipitation across the region. In-

creases in intensity were found across the entire region and

occurred at 44% of the stations, suggesting that hourly

precipitation is becoming more intense. At the same time,

the duration of rainfall eventswas found to be decreasing at

82% of the stations. These findings are in general agree-

ment with previous research, which describe a changing

character of precipitation, favoring more intense events

(Trenberth et al. 2003; Powell andKeim 2015; USGCRP

2017). However, it does not appear that heavy hourly

events are increasing in frequency broadly across the re-

gion like intensity. Rather, it appears that average hourly

accumulations are increasing (producing more rainfall).

Steadymoderate rainfall tends to soak into the ground

and provide a benefit for plants and soils; however,

the same rainfall amount in a short period may cause

flooding and exacerbate runoff that leaves soils much

drier (Trenberth 2011). Heavy and extreme hourly pre-

cipitation events are also associated with flash flooding,

which often does not get reported (Brooks and Stensrud

2000). If precipitation events continue to decrease in du-

ration and become heavier on average, and current pro-

jections anticipate an altered frequency and intensity of

weather extremes (Trenberth 2011; Kirtman et al. 2013;

USGCRP 2017), thought will need to be given to urban

sprawl and the conversion of natural areas to impervious

surfaces. If more areas become urbanized while hourly

precipitation events become, on average, heavier and

shorter in duration, more rainfall will runoff, which will

have implications for water quality, the subsurface water

table, and flooding. To better manage and adapt to ex-

pected changes in the water cycle requires dependable

predictions that must be grounded in the changes already

observed (Hegerl et al. 2015). Precipitation changes are

one of themost important potential outcomes of awarming

climate because of how integral it is to society and

ecosystems (USGCRP 2017).
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